多项式公式总结
拉格朗日插值
普通插值
\[
f(x) =\sum ^{n}_{i=0}y_{i}\prod _{j\neq i}\dfrac{x-x_{j}}{x_{i}-x_{j}}
\]
线性插值
\[
\sum ^{n}_{i=0}y_{i}\dfrac{\prod ^{n}_{j=0}(x-j) }{i!(n-i) !(x-i) }\cdot (-1) ^{n-i}
\]
注意特判 \(0\leq x\leq n\)。
FFT 的推导
\[
\begin{aligned}
f(x) &=a_{0}+a_{1}x+a_{2}x^{2}+\ldots +a_{n-1}x^{n-1}\\
g(x) &=a_{0}+a_{2}x+a_{4}x^{2}+\ldots +a_{n-2}x^{\frac{n}{2}-1}\\
h(x) &=a_{1}+a_{3}x+a_{5}x^{2}+\ldots +a_{n-1}x^{\frac{n}{2}-1}\\
f(\omega _{n}^{k}) &=g(\omega_{n}^{2k}) +\omega _{n}^{k}h(\omega_{n}^{2k}) \\
&=g(\omega_{\frac n 2}^k)+\omega _{n}^{k}h(\omega_{\frac n 2}^{k})
\end{aligned}
\]
多项式全家桶
求逆
\[
\begin{aligned}\dfrac{1}{u(x) }&=f(x) \\
F(u(x) ) &=\dfrac{1}{u(x) }-f(x) =0\\
u(x) &=u_{0}(x) -\dfrac{
F(u_{0}(x) ) }
{F'(u_{0}(x) )} \\
&=2u_{0}(x) -u_{0}^{2}(x) f(x) \end{aligned}
\]
ln
\[
\begin{aligned} u(x) &=\ln f(x) \\
u'(x) &=f'(x)\ln'f(x) \\
&=\dfrac{f'(x) }{f(x) }\\
u(x) &=\int \dfrac{f'(x) }{f(x) }\mathrm{d}x\end{aligned}
\]
exp
\[
\begin{aligned}u(x) &=\exp \{ f(x) \} \\
\ln u(x) &=f(x) \\
F(u(x) ) &=\ln u(x) -f(x) \\
u(x) &=u_{0}(x) -\dfrac{F(u_{0}(x) ) }{F'(u_{0}(x) ) }\\
&=u_{0}(x) (1+f(x) -\ln u_0(x) ) \end{aligned}
\]
开根
\[
\begin{aligned}u(x) &=\sqrt{f(x) }\\
F(u(x) ) &=u^{2}(x) -f(x) \\
u(x) &=u_{0}(x) -\dfrac{F(u_{0}(x) ) }{F'(u_{0}(x) ) }\\
&=\dfrac{1}{2}(u_{0}(x) +\dfrac{f(x) }{u_{0}(x) }) \end{aligned}
\]
快速幂
\[
f^{k}(x) =\exp \{ k\ln f(x) \}
\]
取模
\[
\begin{aligned}n&=\deg (f(x) ) ,m=\deg (g(x) ) \\
\tilde f(x) &=\sum ^{n}_{i=0}a_{i}x^{n-i}\\
&=x^{n}\sum ^{n}_{i=0}a_{i}x^{-i}\\
&=x^{n}f(\dfrac{1}{x}) \\
&\space\space\space\space\space\space\space\space\space\space\space\space\Downarrow \\
f(x) &=g(x) h(x) +r(x) \\
f(\dfrac{1}{x}) &=g(\dfrac{1}{x}) h(\dfrac{1}{x}) +r(\dfrac{1}{x}) \\
x^{n}f(\dfrac{1}{x}) &=x^{m}g(\dfrac{1}{x}) x^{n-m}h(\dfrac{1}{x}) +x^{n}r(\dfrac{1}{x}) \\
\tilde f(x) &\equiv \tilde g(x) \tilde h(x) \pmod {x^{n-m+1}} \\\tilde h(x) &=\dfrac{\tilde f(x) }{\tilde g(x) }\bmod x^{n-m+1}\end{aligned}
\]
多点求值
\[
\begin{aligned}f(x_{i}) &=f(x)\bmod(x-x_{i}) \\
L(x) &=f(x) \bmod\prod ^{mid}_{i=l}(x-x_i) \\
R(x) &=f(x) \bmod\prod ^{r}_{i=mid +1}(x-x_{i}) \\
f(x_{il}) &=L(x) \bmod(x-x_{i}) \\
f(x_{ir}) &=R(x) \bmod(x-x_{i})\end{aligned}
\]
递归计算即可。
快速插值
\[
\begin{aligned}\pi (x) &=\prod ^{n}_{i=0}(x-x_{i}) \\
z_{i}&=\dfrac{y_{i}}{\prod _{j\neq i}(x_{i}-x_{j}) }=\dfrac{y_{i}}{\pi '(x_{i}) }\\
f(x) &=\sum ^{n}_{i=0}z_{i}\prod _{j\neq i}(x-x_{j}) \\
&=\pi (x) \sum ^{n}_{i=0}\dfrac{z_{i}}{x-x_{i}}\end{aligned}
\]
常系数齐次线性递推
\[
f_{i}=\sum ^{k}_{j=1}a_{j}f_{i-j}
\]
即求
\[
x^{n}\bmod(x^{k}-\sum ^{k-1}_{j=0}a_{k-j}x^{j})
\]
重要恒等式
\[
\begin{aligned}
&\text{等比求和}:&&\sum_{i=0}^{n-1} x^i &&=& &\dfrac {1-x^n}{1-x}\\
&\text{等比级数 1}:&&\sum_{n=0}^{\infty} x^n &&=& &\dfrac 1{1-x}\\
&\text{等比级数 2}:&&\sum_{n=0}^{\infty} (n+1)x^n &&=& &\dfrac 1{(1-x)^2}\\
&\text{等比级数 3}:&&\sum_{n=0}^{\infty} \dbinom {n+k-1}{k-1} x^n &&=& &\dfrac 1{(1-x)^k}\\
&\text{指数函数}:&&\sum_{n=0}^{\infty} \dfrac {1}{n!} x^n &&=&& \exp\{x\}\\
&\text{幂函数}:&&\sum_{n=0}^{\infty} \dbinom \alpha n a^nb^{\alpha-n} x^n &&=& &(ax+b)^\alpha\\
&\text{对数函数}:&&\sum_{n=1}^{\infty} \dfrac {1}{n} x^n &&=&& -\ln(1-x)\\
&\text{上升幂转普通幂}:&&\sum_{i=0}^{n} \begin{bmatrix}
n\\
i
\end{bmatrix}x^i &&=&& x^\overline n\\
&\text{下降幂转普通幂}:&&\sum_{i=0}^{n} (-1)^i\begin{bmatrix}
n\\
i
\end{bmatrix}x^i &&=&& x^\underline n\\
&\text{普通幂转上升幂}:&&\sum_{i=0}^{n} (-1)^i\begin{Bmatrix}
n\\
i
\end{Bmatrix}x^\overline i &&=&& x^n\\
&\text{普通幂转下降幂}:&&\sum_{i=0}^{n} \begin{Bmatrix}
n\\
i
\end{Bmatrix}x^\underline i &&=&& x^n\\
\end{aligned}
\]